Multireturn compressed gated range imaging

نویسندگان

  • Grigorios Tsagkatakis
  • Arnaud Woiselle
  • George Tzagkarakis
  • Marc Bousquet
  • Jean-Luc Starck
  • Panagiotis Tsakalides
چکیده

Active range imaging (RI) systems utilize actively controlled light sources emitting laser pulses that are subsequently recorded by an imaging system and used for depth profile estimation. Classical RI systems are limited by their need for a large number of frames required to obtain high resolution depth information. In this work, we propose an RI approach motivated by the recently proposed compressed sensing framework to dramatically reduce the number of necessary frames. Compressed gated range sensing employs a random gating mechanism along with state-of-the-art reconstruction algorithms for the estimation of the timing of the reflected pulses and the inference of distances. In addition to efficiency, the proposed scheme is also able to identify multiple reflected pulses that can be introduced by semi-transparent elements in the scene such as clouds, smoke, and foliage. Simulations under highly realistic conditions demonstrate that the proposed architecture is capable of accurately recovering the depth profile of a scene from as few as 10 frames at 100 depth bins resolution, even under very challenging conditions. The results further indicate that the proposed architecture is able to extract multiple reflected pulses with a minimal increase in the number of frames, in situations where state-of-the-art methods fail to accurately estimate the correct depth signals. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.OE.54.3.031106]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accelerating Magnetic Resonance Imaging through Compressed Sensing Theory in the Direction space-k

Magnetic Resonance Imaging (MRI) is a noninvasive imaging method widely used in medical diagnosis. Data in MRI are obtained line-by-line within the K-space, where there are usually a great number of such lines. For this reason, magnetic resonance imaging is slow. MRI can be accelerated through several methods such as parallel imaging and compressed sensing, where a fraction of the K-space lines...

متن کامل

Determination of normal ranges of regional and global phase parameters using gated myocardial perfusion imaging with Cedars-Sinai’s QGS software

Introduction: Myocardial perfusion imaging using gated SPECT and phase analysis is an effective tool in evaluation of mechanical dyssynchrony. The purpose of this study was to determine the normal ranges of global and regional phase parameters. Methods: A total of 100 patients with normal resting and stress electrocardiograms, low pretest likelihood for c...

متن کامل

Accelerated 3D self-gated cardiac cine imaging at 3T using a tiny golden angle and compressed sensing

Background 3D self-gated (SG) cine imaging with TrueFISP not only provides excellent contrast between myocardium and blood, but also eliminates the need for ECG set up and permits free-breathing acquisitions [1]. However, such Cartesian sampling-based techniques are commonly used at 1.5 T due to the eddy current and SAR problems as well as time-consuming on data acquisition under the Nyquist sa...

متن کامل

High negative predictive value of workload ≥7 METS on exercise testing in patients with normal gated myocardial perfusion imaging: Was imaging really required?

Introduction: Good functional capacity has a high negative predictive value (NPV) in patients with known or suspected coronary artery disease (CAD) similar to a normal gated myocardial perfusion imaging (GMPI). Aim of this study was to evaluate NPV of functional capacity during treadmill exercise in patients with normal GMPI in Pakistani population. Methods: This was a prospective study which ...

متن کامل

High-resolution whole-heart angiography with compressed sensing and 3D respiratory motion compensation in 5 minutes

Background The electrocardiogram and respiratory-gated 3D steadystate free precession (3D-SSFP) sequence acquired during free-breathing generates a high-resolution anatomic datasets of the entire thorax, allowing for a comprehensive evaluation of intracardiac, coronary, and vascular abnormalities. An important limitation of 3D-SSFP, however, is its long imaging time during which the patient’s h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015